Отчет о результатах расчета толщины стали и прогиба

В основе расчета принята методика расчета прямоугольной пластинки, защемленной по контуру, из справочника "Пластинки и оболочки", С.П. Тимошенко, С. Войновский-Кригер, Москва, 1966 (Перевод книги S.Timoshenko, S.Woinowsky-Krieger, Theory of plates and shells, 1959).

Расчет требуемой толщины стали, зная величину прогиба

Исходные данные:

Наименование	Значения
Напор в сети, Па	900
Ширина/высота воздуховода, мм	1900
Длина участка от фланца до фланца, мм	625
Температура перемещаемого воздуха, °С	20
Заданный прогиб, мм	20

В расчете принят коэффициент Пуассона 0,3, модуль упругости – для стали Ст.3. Формула для определения толщины стали:

$$\delta = \sqrt[3]{\frac{kqa^412(1-v^2)}{E\omega}}$$

Гле:

 δ – толщина пластины, см;

k - эмпирический коэффициент в зависимости от соотношения размеров листа (а и b), по данным таблицы 35 Справочника для (w)x=0, y=0;

q – интенсивность нагрузки, кг/см2;

а – ширина листа/длина участка воздуховода, см;

v - коэффициент Пуассона.

Е – модуль упругости материала, кг/см2;

ω – прогиб пластины, см;

Результат расчета толщины стали:

 $\delta = 0.98 \text{ MM}$